Coiled-coil driven membrane fusion: zipper-like vs. non-zipper-like peptide orientation.

نویسندگان

  • Frank Versluis
  • Juan Dominguez
  • Jens Voskuhl
  • Alexander Kros
چکیده

Membrane fusion plays a central role in biological processes such as neurotransmission and exocytosis. An important class of proteins that induce membrane fusion are called SNARE (soluble N-ethyl malemeide sensitive factor attachment protein receptors) proteins. To induce membrane fusion, two SNARE proteins embedded in opposing membranes form a four-helix coiled-coil motif together with a third, cytoplasmic, SNARE protein. Coiled-coil formation brings the two membranes into close proximity allowing fusion to occur. Importantly, structural investigations have demonstrated that native membrane fusion only occurs when the orientation of the coiled-coil motif resembles that of a zipper. The zipper orientation arises when parallel coiled-coil formation takes place between peptides that are anchored into apposing membranes at identical termini, thereby forcing the membranes into close contact. Recently, we have designed a synthetic model for membrane fusion, which is based on a set of lipidated coiled-coil forming peptide pairs which are denoted E-K. When incorporated into liposomal membranes, coiled-coil formation between these lipidated peptides induces targeted and efficient membrane fusion of liposomes. Our model system mimics SNARE-driven membrane fusion, as it contains a coiled-coil motif which has a zipper-like orientation, similar to that of the SNARE proteins. Here we investigate whether the zipper-like orientation of the coiled-coil motifs is a prerequisite for membrane fusion in our model system. Our strategy is based on conjugation of the transmembrane anchor to either the N- or the C-terminus of peptides E and K. Whereas the use of a set of complementary peptides with the membrane anchor on identical peptide termini yields the zipper-like orientation of the coiled-coil complex, membrane anchors on opposite peptide termini results in a non-zipper-like coiled-coil orientation. Surprisingly, it was observed that efficient and targeted membrane fusion was induced even when the coiled-coil motif did not form the zipper-like orientation. This demonstrates that for our model system, the zipper model for membrane fusion does not apply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An isoleucine zipper peptide forms a native-like triple stranded coiled coil in solution.

Recent studies in the field of de novo protein design have focused on the construction of native-like structures. Here we describe the design and characterization of an isoleucine zipper peptide intended to form a parallel triple-stranded coiled coil. To obtain the native-like structural uniqueness, the hydrophobic interface of the peptide consists of beta-branched Ile residues for complementar...

متن کامل

Evidence that the leucine zipper is a coiled coil.

Recently, a hypothetical structure called a leucine zipper was proposed that defines a new class of DNA binding proteins. The common feature of these proteins is a region spanning approximately 30 amino acids that contains a periodic repeat of leucines every seven residues. A peptide corresponding to the leucine zipper region of the yeast transcriptional activator GCN4 was synthesized and chara...

متن کامل

Propensity for a leucine zipper - like domain of human immunodeficiency virus type 1 gp 4 l to form oligomers correlates with a role in virus - induced fusion rather than assembly of the glycoprotein complex

For a number of viruses, oligomerization is a critical component of envelope processing and surface expression. Previously, we reported that a synthetic peptide (DP-107) corresponding to the putative leucine zipper region (aa 553590) of the transmembrane protein (gp4l) of human immunodeficiency virus type 1 (HIV-1) exhibited a-helical secondary structure and self-associated as a coiled coil. In...

متن کامل

The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil.

The ectodomain of the Ebola virus Gp2 glycoprotein was solubilized with a trimeric, isoleucine zipper derived from GCN4 (pIIGCN4) in place of the hydrophobic fusion peptide at the N terminus. This chimeric molecule forms a trimeric, highly alpha-helical, and very thermostable molecule, as determined by chemical crosslinking and circular dichroism. Electron microscopy indicates that Gp2 folds in...

متن کامل

Alanine Zipper-Like Coiled-Coil Domains Are Necessary for Homotypic Dimerization of Plant GAGA-Factors in the Nucleus and Nucleolus

GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups: Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused on the initial characteriza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2013